
GEOLOGY, August 2011 751

INTRODUCTION
Relative sea-level (RSL) change is related to 

the redistribution of mass from ice sheet growth 
and decay, inducing isostatic compensation of 
the underlying solid Earth. Our understand-
ing of current rates of sea-level rise from tide 
gauge (e.g., Church and White, 2006) and satel-
lite (e.g., Cazenave et al., 2009) data, and of the 
ongoing mass loss from the major ice sheets by 
the Gravity Recovery and Climate Experiment 
(GRACE) (e.g., Velicogna and Wahr, 2006) 
requires correction for glacial isostatic adjust-
ment (GIA) effects that are both calibrated to, 
and independently tested by, observations of 
former sea levels. Holocene RSL data are used 
to infer mantle viscosity (e.g., Mitrovica and 
Peltier, 1995) and lithospheric thickness (e.g., 
Tushingham and Peltier, 1992). The Atlantic 
coast of the United States is a key region for the 
comparison of model predictions and sea-level 
observations because it provides an indepen-
dent constraint for GIA models such as ICE-5G 
VM5a (Peltier and Drummond, 2008) that are 
tuned to data sets from Canada, Fennoscandia, 
and Barbados (Peltier and Fairbanks, 2006). It 
is signifi cant that the GIA of the U.S. Atlantic 
coast is dominated by the collapse of the large-
amplitude proglacial forebulge of the massive 
Laurentide ice sheet.

The earliest GIA models (Clark et al., 1978) 
did not fi t the observational data from the U.S. 
Atlantic coast when the viscosity of the man-
tle was assumed to be independent of depth 

(Cathles, 1975). While the VM1 (VM is radial 
variation of the viscosity of the sublithospheric 
mantle) model improved the fi t between obser-
vations and model predictions (Tushingham and 
Peltier, 1992), a better agreement was achieved 
with the combination of ICE-4G (global ice 
sheet reconstructions) and the more complex 
VM2 viscosity profi le (Peltier, 1996). Since the 
publication of Peltier (1996), however, there 
have been advances in the reconstruction of 
RSL (e.g., Horton et al., 2009) and the devel-
opment of improved ice models, including ICE-
5G (Peltier, 2007) and ICE-6G (Peltier, 2010). 
The incorporation of rotational feedback in GIA 
models (e.g., Wu and Peltier, 1984) is an espe-
cially important recent advance. Here we focus 
on whether a new sea-level database is able to 
confi rm the good quality of fi t between observa-
tions and predictions previously obtained using 
simpler models, and reveal signifi cant system-
atic deviations.

CONSTRUCTION OF A SEA-LEVEL 
DATABASE

The sea-level database is created from pub-
lished and unpublished samples of organic 
sediment (salt and fresh-water marshes) and 
shells of marine gastropods and foraminifera. 
The samples are converted into sea-level index 

points (see Supplementary Methods in the GSA 
Data Repository1) when they meet three criteria: 
(1) the location of the sample is established to 
within 1 km; (2) the age of the sample is cali-
brated to sidereal years using the latest 14C cali-
bration curve; and (3) a relationship between 
the sample and a known tidal level (i.e., indica-
tive meaning; van de Plassche, 1986) is identi-
fi ed. For samples that cannot be directly related 
to former sea level, we produce marine (e.g., 
marine shells) and terrestrial (e.g., freshwater 
peat) limiting data from samples that must have 
been deposited below and above mean sea level, 
respectively. Every sample has an error calcu-
lated from a variety of factors inherent to sea-
level research (van de Plassche, 1986). We mini-
mized the infl uence of compaction of sediment 
by excluding intercalated index points (organic 
sediments that were underlain and overlain by 
different sedimentary units) and subdivide the 
remaining into “base of basal” and “basal” (e.g., 
Horton and Shennan, 2009). To account for spa-
tial variations, the database was subdivided into 
16 geographical regions (1–16 in Fig. 1) based 
on a combination of the availability of data, the 
distance from the former center of the Laurentide 
Ice Sheet, and GIA reconstructions. The addition 
of new RSL data may allow further subdivision. 
For all observational data (radiocarbon dates, 
calibrated age ranges, RSL reconstructions with 
associated errors, and references to the original 
publications), see the Data Repository.

PREDICTIONS OF RSL
The model analyses are based on the full 

gravitationally self-consistent form of the GIA 
theory and include the effects of rotational feed-
back (e.g., Milne and Mitrovica, 1996; Peltier, 
1998; Wu and Peltier, 1984). The RSL predic-
tions are based on the ICE-5G (Peltier and 
Drummond, 2008) and ICE-6G (Peltier, 2010) 
ice models. The ice models are coupled to the 
VM5a viscosity model (Peltier and Drummond, 
2008) that reduces the misfi t between predicted 
and observed horizontal motions of the North 
American plate (Argus and Peltier, 2010). VM5a 
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includes a 100-km-thick lithosphere, consisting 
of a 60-km-thick elastic upper layer, beneath 
which there is a 40-km-thick layer with a viscos-
ity of 1022 Pa s. Here we revise the Earth model 
by reducing the viscosity of the upper mantle 
and transition zone above the 660 km phase 
transformation from 0.5 × 1021 Pa s (VM5a) to 
0.25 × 1021 Pa s (VM5b) (Fig. DR2 in the Data 
Repository). This is similar to the value calcu-
lated by Wolf et al. (2006) of 0.32 × 1021 Pa s 
but represents a 50% reduction compared to the 
viscosity of 0.53 × 1021 Pa s provided by Paul-
son et al. (2007). However, Paulson et al. (2007) 
noted that a lower upper mantle viscosity could 
be supported if associated with a stronger lower 
mantle viscosity. In Tushingham and Peltier 
(1992) it was shown that reducing the viscosity 
of the upper mantle and transition zone substan-
tially increases the width of the proglacial fore-
bulge, and therefore raises the predicted RSLs 
along the U.S. Atlantic coast without increasing 
the number of free parameters. VM5b continues 
to fi t RSL data from northern Canada because 
they are insensitive to upper mantle and transi-
tion zone viscoelastic structure (Peltier, 1998).

HOLOCENE SEA-LEVEL OBSERVATIONS
The new Holocene RSL database for the U.S. 

Atlantic coast consists of 342 sea-level index 

points, 189 marine limiting dates, and 155 ter-
restrial limiting dates (Fig. 2A). The RSL data-
base previously used to constrain GIA models 
(Peltier, 1996) contained fewer index points (n 
= 175) and marine limiting data (n = 85), but a 
greater number of terrestrial limiting data (n = 
395). The increase in the number of index points 
in the new database is due to both the addition 
of new data (e.g., Horton et al., 2009; Miller et 
al., 2009) and the reinterpretation of terrestrial 
limiting dates as index points on the basis of the 
macrofossil and microfossil sea-level indicators. 
The elevation errors are index-point specifi c, 
in contrast to the standard vertical error term 
employed in the previous database. The new 
database has good temporal coverage from 6 ka 
to present; however, only 7% of the index points 
are older. The early Holocene record is primarily 
defi ned by limiting data. Spatially, RSL is well 
constrained by index points between Maine and 
South Carolina, although there is an absence of 
index points in Georgia and the Atlantic coast of 
Florida. The validation of observations strongly 
affects the interpretation of a GIA model. For 
example, the New Jersey predictions must now 
plot through index points, rather than being 
below a host of samples previously interpreted 
as limiting data (Fig. 2B). The North Carolina 
site demonstrates the importance of the addition 

of new data (Horton et al., 2009) to constrain 
models of GIA (Fig. 2C).

Analysis of the full database from eastern 
Maine to southern South Carolina (regions 
1–16 in Fig. 3) demonstrates that RSL has 
not risen above present during the middle and 
late Holocene. In Maine and northern Massa-
chusetts, limiting data suggest that RSL may 
have dropped from above present prior to a 
slowstand between 11.5 and 7.5 ka (e.g., Kel-
ley et al., 2010). Rates of RSL change were 
highest during the early Holocene and have 
been decreasing over time, due to the expo-
nential form of the GIA process following 
deglaciation and the reduction of ice equiva-
lent meltwater input from 7 ka onward. The 
maximum rate of Holocene RSL rise (e.g., 
~15 m since 6 ka) occurred in New Jersey and 
Delaware (regions 8−10), coincident with the 
area of greatest ongoing GIA related subsi-
dence. The RSL histories of the northeastern 
Atlantic region (regions 1−5) are constrained 
by sea-level index points from 7 ka to present; 
all fi ve areas reveal a rise in sea level of <10 m 
since 6 ka. Index points from southern North 
Carolina to southern South Carolina (regions 
14−16) similarly support a rise in RSL of 
<10 m during the past 6 k.y.

IMPLICATIONS FOR GLACIAL 
ISOSTATIC ADJUSTMENT MODELS

The ICE-5G VM5a model is in good agree-
ment with the Holocene RSL observations in 
eastern (region 1) and southern Maine (region 
2) for the past 6 k.y. The model is above marine 
limiting dates from southern Maine between 
8 and 11 ka. For the remaining study areas 
(regions 3−16), the model fi ts the observations in 
the late Holocene (0–3 ka), but with increasing 
age there is a systematic disagreement between 
the model and the data. The misfi t is most pro-
nounced along the mid- and southern Atlantic 
coastlines (New York, 6, to southern South 
Carolina, 16) with observations of RSL ~10 m 
higher than model predictions at 6 ka. The pre-
dictions are invalidated by marine limiting dates 
at southern Massachusetts (4), New Jersey (8), 
Chesapeake Bay (11), and northern North Caro-
lina (13). ICE-6G VM5a is an improvement 
over ICE-5G VM5a for northern Massachusetts 
to New York (regions 3−6). However, the model 
now underpredicts RSL in eastern Maine (1) 
and overpredicts in southern Maine (2). There 
is little difference between ICE-5G and ICE-6G 
from Long Island (7) to southern South Carolina 
(16), because both ice models have similar mass 
and cover exactly the same surface area of the 
North American continent.

For both ice models, decreasing the 
upper mantle viscosity in VM5a to produce 
VM5b results in a considerable improvement 
(Fig. DR3) in the quality of fi t along the U.S. 
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Figure 1. Location map of United States At-
lantic coast showing 16 study areas from 
Maine to South Carolina. Numbers corre-
spond to reconstructions in Figure 3. ME—
Maine; MA—Massachusetts; RI—Rhode 
Island; CT—Connecticut; NY—New York; 
NJ—New Jersey; PA—Pennsylvania; DE—
Delaware; MD—Maryland; VA—Virginia; 
NC—North Carolina; SC—South Carolina; 
GA—Georgia; FL—Florida.

Figure 2. Age-altitude plots of relative sea-
level (RSL) observations for Peltier (1996) 
and new database. A: Highlighting all index 
points; inset is histogram showing temporal 
distribution. B, C: Differences in New Jersey 
and northern North Carolina. Index points in 
new database are plotted as boxes with 2σ 
vertical and calibrated age errors, whereas 
in previous database only age errors are 2σ.
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Atlantic coast in the area of greatest GIA-related 
subsidence (regions 4−12). Earlier model itera-
tions that also increased the upper mantle/lower 
mantle contrast ratio from 1:1 to 1:4 resulted in 
a similar decrease in variance (Tushingham and 
Peltier, 1992). However, by reducing the value 
of both the upper mantle and the transition zone 
viscosity, we may have signifi cantly violated 
the model fi t to the McConnell (1968) spectrum 
of Fennoscandian rebound. This would suggest 
that we have directly detected a requirement for 
lateral viscosity variation in the upper mantle 
from two independent data sets associated with 
the near-fi eld Fennoscandia region and interme-
diate-fi eld U.S. Atlantic coast (e.g., Kaufmann 
and Lambeck, 2002). It has previously been 
noted that one-dimensional viscosity structure 
derived from global postglacial rebound obser-
vations is heavily weighted toward the viscosity 

structure beneath the loaded region and not the 
global average (Paulson et al., 2005).

While the VM5b viscosity profi le results in a 
signifi cant improvement, there remain two out-
standing issues. First, the incorporation of the 
VM5b viscosity profi le with ICE-5G predicts 
late Holocene highstands of RSL in the north-
eastern United States (regions 1−3), because 
the softening of the upper mantle and transition 
zone produces a time-dependent shift of the 
boundary between uplift and subsidence. The 
highstand is removed at eastern Maine (region 
1) by using ICE-6G because of a change in the 
thickness of the proximal ice load. Therefore, 
the remaining highstands in southern Maine 
(region 2) and northern Massachusetts (region 
3) may also be eliminated through further 
thickening of the ice load in proximity to these 
two locations. Alternatively, a slight increase in 

the thickness of the elastic lithosphere would 
accomplish the same improvement of fi t (Tush-
ingham and Peltier, 1992).

Second, and more important, are the continu-
ing misfi ts between the VM5a/VM5b RSL pre-
dictions and observations in the southern Atlan-
tic region (regions 13–16). We must consider 
that changes to other aspects of the Earth model 
may be necessary to fi t the data, including litho-
spheric thickness (e.g., Tushingham and Peltier, 
1992) and/or the incorporation of lateral het-
erogeneity in the mantle (e.g., Wu, 2006) and 
lithosphere (e.g., Wang and Wu, 2006). In Tush-
ingham and Peltier (1992), it was demonstrated 
that changes in lithospheric thickness from 71 to 
245 km have little effect on the variance between 
model predictions and sea-level observations 
during the Holocene along the U.S. Atlantic 
coast. Three-dimensional mantle viscosity may 
be required to incorporate the effects of the sub-
duction of the Farallon plate 80 m.y. ago, which 
has now penetrated the top half of the lower 
mantle beneath the Atlantic (e.g., Bunge and 
Grand, 2000). Changes to the viscosity of the 
upper part of the lower mantle in the one-dimen-
sional model (e.g., Davis and Mitrovica, 1996) 
are usually ruled out by the strong constraints 
of the RSL data from Canada. However, Wang 
and Wu (2006) produced a model supported by 
seismic velocity anomalies from global tomog-
raphy models that showed lateral variations at 
all depths of the mantle performed better than a 
model with no lateral variations.

RSL observations may also be subject to 
changes from processes such as compaction, 
tidal range variations, and tectonics (e.g., 
Shennan and Horton, 2002). The database 
shows no discernable difference between basal 
and base of basal samples; compaction would 
only lower the elevation of index points, arti-
fi cially improving the fi t to the model. If the 
tidal range has not remained constant through 
time, sea-level chronologies based upon tide-
level indicators will differ from true sea level. 
Modern tidal range along much of the south-
eastern Atlantic coast is <2.5 m. Therefore, 
an unrealistic tenfold increase in tidal range 
is needed to lower the elevation of sea-level 
observations and remove the misfi t at 7 ka. The 
rate of tectonic uplift necessary to achieve a 
fi t between model and data (>1 mm yr–1) dis-
agrees with global positioning system (Sella et 
al., 2007) and tide-gauge (e.g., Douglas, 1991) 
observations. Uplift rates of this magnitude are 
more typically associated with seismic coast-
lines such as Cascadia (e.g., Burgette et al., 
2009). There is evidence for tectonic activity 
in North Carolina and South Carolina. How-
ever, the calculated long-term uplift rate of 
~0.02–0.05 mm yr–1 along the Orangeburg 
Scarp (South Carolina) (Dowsett and Cronin, 
1990) is not suffi cient. The rate of uplift along 
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the Cape Fear Arch (North Carolina) is poorly 
constrained (0.14–1.8 mm yr–1) and may be 
highly localized (Marple and Talwani, 2004). 
Rates of change due to mantle upwelling and 
downwelling show no spatial pattern along 
the U.S. Atlantic coast and are likely to be 
<0.1 mm yr–1 (Conrad and Husson, 2009). It 
is unfortunate that there are currently no RSL 
data available from the Atlantic coast of Florida 
or Georgia to allow us to ascertain whether the 
misfi t between observations and predictions is a 
regional phenomenon. This limitation currently 
prevents us from confi rming that the internal 
viscoelastic structure must be laterally hetero-
geneous on a scale that infl uences ongoing GIA.
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